CHAPTER 1

Single-RF Longitudinal Dynamics

In this chapter, we provide an introduction to longitudinal dynamics in particle accelerators.
Slip-stacking is a complex problem in longitudinal dynamics that is best understood as a

perturbation on the single-RF system that is presented in this chapter.

1.1 RF Accelerating Cavities

Particle beams are accelerated in high-energy machines by devices known as radiofrequency
(RF) accelerating cavities. RF cavities are resonant devices used to trap an oscillating
electromagnetic field which acts on the charged particle beam via the Lorentz force. RF
cavities trap electromagnetic waves only at discrete frequencies (eigenfrequencies), with
corresponding spatiotemporal distributions (eigenmodes). Typically, RF cavities are only
operated at the lowest order mode, known as the fundamental or TMg;g mode, with higher
order modes being unwanted deviations from simple longitudinal acceleration. We will use
the term RF frequency w,f = 27 f,; to refer specifically to the accelerating mode.

Fig. 1.1 shows a simple RF cavity operating in the TMp1p mode. The electric field is
parallel (or antiparallel) to the motion of the beam and the magnetic field is perpendicular
and rotationally symmetric. In a purely cylindrical cavity, the RF frequency is determined
by the geometry of the cylinder. However the ferrite tuner is electromagnetic coupled to

the body of the cavity and it can be used to adjust the RF frequency of the cavity. A



bias current is applied through the ferrite tuner which adjusts the magnetic permeability
of the ferrite rings and consequently shifts the RF frequency as needed. Other RF cavities
change the resonant frequency with mechanical tuners. The electromagnetic waves generate
heat due to the surface resistance of the RF cavity and this heat is compensated by cooling

elements that are not shown in Fig. 1.1.
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Figure 1.1: A diagram of a simplified RF cavity. [1]

High-voltage RF electronics are used to amplify a sinusoidal signal and drive the RF
cavity. From an electronic perspective, the RF cavity can be approximated by the RLC

resonant circuit shown in Fig. 1.2. The corresponding resonance frequency is given by

1
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where L, is equivalent inductance and Cq is the equivalent capacitance. Another important

frf

parameter is the quality factor of the cavity, known as @), which is the ratio of energy stored



to energy dissipated per cycle. From the circuit model, the Q-factor is given by:

Ceq

Q = Rsh Leq

(1.2)

where Ry, is the shunt impedance. As shown in Fig. 1.2, a higher Q-factor corresponds to

a sharper the frequency resonance.
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Figure 1.2: (top) An equivalent RLC circuit corresponding to a resonant RF cavity. (bot-

tom) The complex impedance of the RLC circuit for @ = 1 and @ = 30. [2]

1.2 Derivation of Longitudinal Motion

Here we derive the longitudinal motion of charged particles accelerated by an RF cavity.
For now, we consider only the single-particle motion and then we relate our results to the
ensemble of particles that make up a charged particle beam. The longitudinal coordinates
of a charged particle are a position coordinate ¢ and a momentum coordinate §. The ¢
coordinate is the arrival time of a charged particle relative to the oscillation of RF wave in

the cavity. The § coordinate is the fractional deviation of the particle momentum from a



reference momentum.
The acceleration of a charged particle passing through a time-varying accelerating field

is given by

Be d/2pBc
AE = qV? / sin(wyft + ¢)dt (1.3)

—d/2Bc
where ¢ is the charge of particle, V' is the RF cavity voltage, Gc¢ is the velocity of the particle,
d is the length of the accelerating gap in the RF cavity, and ¢ is the phase corresponding

to the arrival time of the incoming particle. The integral given in Eq. 1.3 is trivial to solve:

AFE = qV (sin x/x) sin(¢) (1.4)

where x = w,rd/2Bc. The term sin x/x is referred to as the transit time factor and hereafter

we use the effective cavity voltage V (sin x/x) — V.
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Figure 1.3: A simplified particle accelerator ring. The dipole magnets curve the beam so
that it can be accelerated many times by the same RF cavity. The quadrupole magnets
transversely focus the beam so it does not diverge into the beampipe wall as it is trans-

ported. [1]

In a cyclic particle accelerator a particle beam is directed along a closed curve and passes
through the same sequence of beamline elements each revolution. Fig. 1.3 shows a diagram
of a simple ring, where dipoles are used to bend the beam in a loop, quadrupoles are used

to focus the beam transversely, and an RF cavity is used to accelerate the beam. In order



for an RF cavity to act coherently on a particle over many passes, the RF frequency f,;
of the particle must be near a harmonic multiple h of the revolution frequency fre,. When
frf = hfrev we refer to this as the reference frequency and the corresponding momentum
of the particle as the synchronous momentum py. We define our momentum coordinate

as the fractional deviation from the synchronous momentum:

P —DPo
0= 1.5
Po (1.5)
Using Eq. 1.4 and Eq. 1.5 we write the change in the delta coordinate per unit time.
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where V5 = B%‘éo is the maximum fractional change in the reference momentum within a

single revolution.
The revolution period depends on the particle momentum and determines the change
in the phase ¢ during each revolution. The phase-slip factor 7 is defined to be the linear

dependence of the revolution period on particle momentum:

T-Ty 19T
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Recall that we’ve defined the reference momentum such that 7' = T;..,, when § = 0. Particles
at greater momentum take less time to travel the same path length but generally take longer
path lengths through particle accelerators. Consequently, the phase-slip factor n can be

positive or negative but will generally increase with energy:
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where C' is the path length of the particle beam in one revolution and is referred to as the

circumference. The parameter yr is calculated from the properties of the accelerator lattice



and corresponds to the energy at which the phase-slip factor is zero. A synchrotron is a
cyclic particle accelerator that is designed to operate with a nonzero phase-slip factor. For
a non-accelerating beam we take n to be a given constant parameter.

Using Eq. 1.7 and taking n to be constant, we can write the change in the ¢-coordinate
as a function of the §-coordinate:
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¢ = 27 frevhnd (1.9)

1.3 Longitudinal Equations of Motion

Taking Eq. 1.6 and Eq. 1.9 together, we find the complete equations of motion in the form

of coupled first-order differential equations:
6 = frewVasin(@), ¢ = 27 frenhnd (1.10)
The corresponding second-order equation of motion is
¢ = —w?sin(¢) (1.11)

where

Vshln|
2

Ws = 27 frew (1.12)

The frequency of small oscillations wy is referred to as the synchrotron frequency. We have
adopted the convention that if n > 0 then ¢ — ¢+ 7 so that the stable fixed point is always
obtained at ¢ = 0 and the unstable fixed point is always found at ¢ = 7. Clearly Eq. 1.11
describes a system isomorphic to the simple pendulum. Fig. 1.4 shows the trajectories of
particles governed by Eq. 1.10.

For small ¢, Eq. 1.11 has a stable solution known as a synchrotron oscillation

¢ = psin(wst + ) (1.13)



Figure 1.4: Several phase-space trajectories for the synchrotron motion (blue lines) alongside

the instantaneous phase-space motion (arrows). Here, n < 0.

where the amplitude p and the initial phase 1) are set by initial conditions.

The Hamiltonian corresponding to Eq. 1.10 is given by
H = 7 frevh|n]0? + freoVs[1 — cos()] (1.14)

The sign of Eq. 1.14 has been fixed (for positive and negative 7)) so that H is nonnegative

and is zero only at the stable fixed point. The separatrix (H = 2f,¢,V5) is given by

0== &«/1 + cos(¢) = iﬁ Y cos <§> (1.15)
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Taking the integral over the separatrix, the total stable phase-space area can be calculated

(¢ - 0 units):

T2 ws 0] 16 ws
=9 I Z)ldp = —— 1.16
Ao / Rl oren (2) = Hnl wren (1.16)

To obtain the phase-space area in eV-s, one should multiply this quantity by the reference
momentum pg and divide by the RF frequency 27 f, .

The region within the separatix is known as the RF bucket. Particles within this region
of phase-space stay within this region of phase-space. The average momentum and phase

of particles in the RF bucket can be changed be by adiabatically changing the fixed point



of the bucket. The collection of particles that share the same RF bucket are referred to as a
bunch. A particle beam is composed of many discrete bunches, one arriving after another,
all with similar momentum.

The size of a particle bunch in phase-space is described by quantity known as the
longitudinal emittance, which calculated using the product of the RMS momentum spread

with the RMS temporal spread:

€ =To,0r =T 0504 (1.17)
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A beam with a smaller longitudinal emittance is preferable because it facilitates the task

of transporting the beam in the RF bucket. Nonlinear effects can distort or reduce the

effective RF bucket area.

1.4 Synchrotron Oscillation Motion

In this section we examine the longitudinal dynamics of particles within the RF bucket.
First we will show the shift in the synchrotron oscillation frequency with the synchrotron
oscillation amplitude of a particle. Next we will show a perturbative solution to oscillatory
particle trajectories.

The synchrotron oscillation period can be calculated as a function of maximum oscilla-

tion phase qg by manipulating Eq. 1.11:
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where T is the synchrotron period of small oscillations Ty = 27 /ws and K is the complete

elliptic integral of the first kind K[k /
1-— k2 sin?



To further understand how the large oscillation trajectory differs from the small oscil-

lation trajectory, we can expand the system perturbatively. For small ¢, Eq. 1.11 becomes:

¢ = w?iﬂqﬁk“ ~ -l <¢ 1¢3+...> (1.19)
— (2k +1)! 6

Using the Poincare-Lindstedt method (see Ch. 2 of [3]), we can obtain a perturbative

solution for Eq. 1.19 given by:
¢~ psin(ws(1 4+ o)t + ) + Aszsin(Bws(1 4+ o)t + 3¢) + ... (1.20)

For brevity let s, = sin(nws(1 + o)t + ny). We put Eq. 1.20 into Eq. 1.19 to obtain:

. 1
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Applying the second-order derivation to Eq. 1.20 and setting the two sides equal, we obtain

two equations:

1
—W3(1 4+ 0)%ps; = —w? <p - §p3> s1 (1.22)
1
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In Eq. 1.23 o is negligible and we obtain:

1 3

We subtract —wsps; from each side of Eq. 1.22, hold o2 negligible, and solve for o:

1 2
- 1.25
o T (1.25)

If we perform this expansion to higher orders of p we can obtain terms with higher odd
harmonics of w,, obtain more precise calculations of the coefficients to these terms, and

obtain a more precise calculation of the synchrotron tune shift o.



1.5 Slipping Particles Motion

In this section we examine the longitudinal dynamics of particles outside of the RF bucket
by calculating the pertubative solution to the particle trajectories.

Particles with trajectories outside of the separatrix slip with respect to the RF bucket.
The motion of these particles can be studied by writing Eq. 1.11 in a moving reference

frame:

¢ =0t + o + 0 (1.26)
0 = —w?sin(Qt + ¢, + 6) (1.27)
0 = —w[sin(Q + ¢o) cos(8) + cos(QU + ¢o) sin()] (1.28)

For small 0, we expand Eq. 1.26 perturbatively to study the oscillatory motion of the slipping

particle:
0 =—uw? 3 (_1)k02’f sin(Qt + ¢o) + i ﬂe%ﬂ cos(QUt + ¢o) (1.29)
s (2k)! (2k + 1)!
k=0 k=0
0 ~ —w? [sin(Qt + ¢o) + 0 cos(Qt + ¢o)] (1.30)
The perturbative solution to Eq. 1.29 is of the form:
0 ~ B sin(Qt + ¢o) + Basin(2Qt + 2¢,) + . .. (1.31)

For brevity let S, = sin(nQt+n¢,) and C,, = cos(nQt+n¢s). We put Eq. 1.31 into Eq. 1.29

to obtain:

0~ —w;2[S) + B1S1CY] (1.32)
We split Eq. 1.32 into two equations:

—O’B;S) = —w; %8, (1.33)

1
—492325’2 == —§ws_2Bng (134)
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From Eq. 1.33 we obtain:

Ws\ 2
By = (5) (1.35)
From Eq. 1.34 and Eq. 1.35 we obtain:
1 rwe\2 1 rws\4
B=5(g) 2~5(3) (1.36)

The perturbation can be expanded to higher orders and the coefficients of B,, are of the
order (%) n. The perturbation for small 0 is better expressed as a perturbation of small
<%)2 If the slipping particle trajectory is close to the separatrix then €2 is small and the
nonlinear oscillatory motion is large. For a particle far from the reference momentum, the
force from the RF cavity does not add up coherently and the motion approaches that of a
coasting beam.

The motion of stable slip-stacking particles, which will be described in Chapter 3, is a

combination of synchrotron motion and slipping motion.

1.6 Acceleration & Focusing Motion

Particle beams are accelerated by gradually changing the resonant frequency of the RF cav-
ities. The momentum of the stable particles change to match the new reference momentum.
For a linearly increasing RF frequency, we transform the coordinates into the accelerating

reference frame:

6 = freoVs[sin(@) — sin(s)], ¢ = 27 frevhnd (1.37)

The stable fixed point for these equations of motions is ¢ = ¢5,0 = 0, which corresponds
to a particle whose momentum exactly follows the reference momentum and whose phase
changes each revolution to exactly match the change in the RF frequency. The separatrix

changes depending on ¢s and this region of phase-space is referred to as the running RF

11



bucket. The greater the magnitude of ¢, the greater the acceleration and the smaller the
RF bucket.

Fig. 1.5 shows the motion of particles inside and outside the running RF bucket. Parti-
cles within the separatrix remain synchronized with the RF and accelerate linearly. Particles
outside the separatrix, however, are not accelerated and deviate increasingly from the ac-
celerating reference momentum. The transversely bending and focusing magnetic elements
of the particle accelerator ring increase in field strength to follow the accelerating beam and
consequently the particles that are not accelerated are lost. The total range of momentum
that a particle accelerator ring can support due to transverse dynamics is known as the
momentum aperture of that ring. The total range of momentum that an RF bucket can

store simultaneously is known as the momentum acceptance.
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Figure 1.5: Phase space trajectories associated with the running bucket. Only particles

inside the separatrix follow the accelerating reference frame.

In [2], the running bucket area factor as(¢s) gives the ratio between the stable phase-

space area of the running bucket and the stationary bucket:

Ab 1 T—s

el A QR COR Rt o) sin(es)[V2dé  (1.38)

ap(9s) =

where ¢, is found from the transcendental equation

COS(d)u) + ¢u Sin(¢s) = COS(¢S) + (7‘- - ¢s) Sin(d)s) (139)

12



The running bucket area factor is plotted in Fig. 1.6 and is approximated with

1 —sin(¢s)

ap(ps) = m (1.40)
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Figure 1.6: The ratio between the running bucket area and the corresponding stationary
bucket area, as a function of the synchronous phase ¢5 of the running bucket. The exact

value is shown in a dark orange line and the approximate value is shown in a dashed orange.

The parameters fre,, Vs, and n in Eq. 1.37 generally change with acceleration but and
can be treated adiabatically so long as they change slowly compared to the synchrotron
frequency. This approximation breaks down when 7 is small because the focusing is weaker
and this is referred to as quasi-isosynchronous condition. In the quasi-isosynchronous case,
the dependency of the revolution frequency on 7 is expanded to include the second order

term:

T-—T 1 0T 1 92T 62
Te’l)%0+ a—6+ 8—5

_ 2
T SOt TL 950 T T g g T 0t md (141)

When a particle accelerator crosses transition energy, where 1 = 0, it can be a significant
source of longitudinal emittance growth. At transition energy, acceleration is still occurs
but there is no linear longitudinal focusing force. After crossing transition energy, the

longitudinal focusing force will have changed orientation and the stable fixed point will have
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changed by 7. The process complicates particle motion and decoherence in the ensemble of

particles increases the longitudinal emittance.

1.7 Summary

In this chapter we show that longitudinal dynamics of single fixed-frequency RF cavity is
identical to that of simple pendulum. The separatrix of the simple pendulum separates
the stable phase-space area from the unstable phase-space area. The stable particles are in
the RF bucket and the unstable particles are slipping with respect to the RF bucket. The
ensemble of particles that share the same RF bucket are referred to as a bunch and the size
of a bunch is measured by its longitudinal emittance. In order to change the energy of a
particle bunch the RF frequency must be changed gradually and only the particles inside

the separatrix will be accelerated successfully.
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